4

4

F Y 4
) o @
o &

&
&
! 4
o o°
X 4
®

PHP 8 in a
Nutshell

Amit D. Merchant ‘
.

Sy

PHP 8 in a Nutshell

Table of Contents

INtrodUucCtion ..o 11
PHP 8 o 12
UNION TYPOS .o e e e e e e e e e e e e 13
What are union types exactly? ..o, 13
Advantages of using UNioN tYPES ...cciiiiiiiiiiii i, 15
SCOPE Of UNION LYPES vt 15
The Nullsafe Operatorco o 16
The nullsafe OPeratorccccoii i 16
Constructor Property Promotionccooooee s 18
What is Constructor Property Promotion?ccccocoviiiiiiiieeeeeee, 18
Rules of using constructor property promotionccccocviiiiiiiiiiiiiiiiiiinnnn. 19
New String functions ... 21
The str_contains fuNCLIONooiiiiii e 21
str_starts_with and str_ends Withcccccooiiiiii 23
Non-capturing Exception Catchescccciiiiiii 25
Introducing non-capturing catchesccoooii, 25
The MIX@d TYP@ ...ooviiiiiiiiiiii e 27

What IS @ MiXed tYPE7 ittt 27

PHP 8 in a Nutshell

Match EXPresSionscccoiiiiii 34
Good ol' switch statement ... 34
MAtCN @XPIrESSION ..vviiiiiiiiiiei i 35

Named Arguments ... 39
Named ParameELerS ... 39
[N ClOSING oot 41

AEFIDUTES ..o ——— 42
What are AtEributes? ... 42
How to define Attributes? ..., 43
Practical USAg@eueeeiiiiiie s 44
SCOPES OF ALLFIDULES ..vviiiiiiiii i 46
REaI-WOIIA USAQE ..ciiiiiiiii i 47

The :iclass Keyword ... 49
Using ::class on objects iN PHP 8vvviiiiiiiiiiiiiiiicsnnn e 49

Throw as an EXPresSSIONcccoiiiiiiiiiiiiiiee e 51
The throw keyword as an eXpreSSioNcoovvoiiiiiiiiiiiee e 51

The get_debug_type() functionccciiiiiiiiiiiii 54
The get_debug_type() function ... 55
[N ClOSING e 56

PHP 8.1 oo 57

Readonly Properties ... 58

The Old WaY oo 58

PHP 8 in a Nutshell

Readonly properties in PHP 8.1 ... 60
[N ClOSING oo 62
Native Enumerations ... 64
ENUMS IN PHP 8.1 ittt 64
FEtCh ENUM CASES .vvviiiiiiiiiiiiiiiiiii e 67
Advantage of USING ENUMS ... e 67
[N ClLOSING ettt e e e e e e s rr e e e e e e e e e aaas 68
Fibers or Coroutinescccciii 69
Fibers or Coroutines or Green threads in PHP 8.1ccccoovviiiiiiiiiiiiiinnnnnn, 69
Creating @ FIDEI .ovvviiii e 69
[N ClOSING e 71
INtersection TYPES ... 72
Pure INterseCtion TYPES ..ovviiiiiiiiiiiiiiiiii ittt 72
SOME GOLCNAS .ovviiiiiiiiiiiiiii 73
First-class callables ..., 74
What are First-class callables? ... 74
A practical @Xample ... 74
New in initializers ... 77
Initializing objects in constructor propertiescccccoovviviiiiiiiiiiiniieeeennns 78
RESLIICHIONS oo 79
[N ClOSING oo 80
Array unpacking with string keysccooii, 81
TNE OlA WAY oot e e e 81

Array unpacking With String KEYSuuiiiiiiiiiiiiiiiiiinnsnnn e 82

PHP 8 in a Nutshell

The array_is_list() functioncccciii 83
The array _is_list() FUNCLION ..ovvivviiiiiiiiiii e 84
The Caveal ..o 85

The Never Return Type ... 86
The NEVEr retUIM tYPE i 86
GOLCNAS oo —————— 87

Final class constantscccc 89
The final class CONSTANES ...vvvvviiiiiiiiiiii e 90

PHP 8.2 e 91

Readonly ClasS@sccoooiiiiiiiiiiiiii 92
Untyped and static properties are restrictedcccccviiiiiiiiiiiiiiiiiiiie, 93
Only readonly class can inherit other readonly classesccccccvvvviviiinnns 93
CONCIUSION e 94

Null and false as standalone typesccccccciiiiiiiiiiiic 95
10T 0V S ESERR P 96
GOLCNA e 96

The true tyPe ... 98
What IS TrU@ TYPE@T7 .o 98
LiMIEATIONS weetiiiiiiii e 99
[N CONCIUSION oo 99

Using constants intraits ... 101

The problem 101

PHP 8 in a Nutshell

The SOIULION 1oiiiiiiiiiiieeie e 102
LIMIEATIONS oot 105
[N SUMIMAIY oottt e e e e e e e e e a e 107
Disjunctive Normal FOrm TYPeSccccooriiiiiiiiiiiiiiiiiiiie e 108
LIMIEATIONS oot 109
Dynamic Properties Depreciationcccccooeiiiiiiiiiiiiii 110
Allow DYNamicC Properti€sccoooiiiiiiiiiiiiiiiiiee e 110
GOoING IN PHP O s 111
Fetch properties of enums in const expressionsccccceee 112
BenefitS oo 113
Redacting properties in backtracesccccooiiiiii 114
BeNefitS oo 115
New Random EXTensioncccocoviiiiiiiiiiiiiiiiii 116
The new MySQLi execute_query() method ... 117
Some MINOr IMProVEMENESccccciiiiiiiiiiiiiii e 119
Deprecate ${} string interpolationccccciiiiiiiiiiiiiii 119
Deprecate and Remove utf8_encode and utf8_decodecccceveennne 119
Deprecating partially supported callablescccooiiiiiiiie, 120
PHP 8.3 121
The json_validate() function ..., 122

The SIGNALUIE oo 122

PHP 8 in a Nutshell

BN IS s 123
Improved unserialize() error handlingcccoooiiii i, 124
New methods in the Randomizer classcccooie, 126

The new getBytesFromString() methodcccccceiiiiii i, 126

The getFloat() method ..., 127

The nextFloat() MEthOdcoovivieiee e 128
Fetch class constants dynamically ..., 130
Improved Date/Time EXCeptionscccccociiiiiiiiiiiiiii i 132

Backward compatibility ... 134
Typed Constants ... 135
Readonly amendments ... 137
The #[\Override] attribute 141

BN IS 144
Arbitrary static variable initializers ... 146
Make unserialize() emit a warning for trailing bytes 148
A new mb_str pad function ... 149
Miscellanous improvementsccccoccciiii 151

Saner Increment/Decrement Operators ... 151

Saner array_sum and array_product functionscccoiis 151

PHP 8 in a Nutshell

Use exceptions by default in SQLite3 extensioncccccvvvvvvvvvvviiviiiniinnn, 152
Deprecations in PHP 8.3 ... 153
Functions with overloaded signaturescccocvviviiiiiiieee 153
MiSC dePreCationSccoiiiiiiiiiiie e a e 154
PHP 8.4 e 155
Property hOOKS ... 156
TN PrECUISOr ittt 156
What are property hooKS? ... 158
Using hooks with interfaces ... 161
THINGS TO NOTE oo 161
[N ClOSING ettt 162
The new #[\Deprecated] attribute 163
New array methods ... 165
The array_find Methodovvviiiiiiiii 165
The array_find_key method ... 166
The array_any methodcceviiiiiiiiii e 167
The array_all method ... 168
101001 0 1= VSO PSOPPPPRRPN 169
Effortlessly parse huge XMLScccoiiiiiiiiii e 170
Multibyte equivalents for the trim() function 171

A new class for parsing and serializing HTML5 173

PHP 8 in a Nutshell

Grapheme cluster for str_split function ... 176

Calling methods on a newly instantiated class without parentheses ..
178

New modes for the round() function ..., 179
Improvements related to JIT ..., 180
Implicitly nullable parameter types will be deprecated 181
Separate visibilities for read and write operations on properties 182
exit() is now a standard function ..., 184
A new Enum for rounding modesccoccciiiii 185

Raising zero to the power of a negative number will give a deprecation

LV 1 1 11T« TR TP PUPP TP 189

A dedicated class for stream processingccccccceiiiiiiiiiiiiiiiiiinnnn. 190

Session propagation will no longer be done using GET/POST requests

A new function to efficiently calculate both the quotient and remainder

inasingle operation ..., 192

Improvements to the XMLReader and XMLWriter classes 194

PHP 8 in a Nutshell

Introduction of Lazy Objectsccccooiiiiii 195
Creating Lazy ODJECES .ovviiiii i 195
Handling the State of Lazy Objectsccccoiiiiiiiiiiiiiiie 196
Lifecycle of Lazy ODJECESccviiiiiiiiiiiiee e 196
A real-world usage of Lazy Objectscccccciviiiiiiiiiiiiiiiiiiiiiiiiiaians 197

A new function to allow parsing of multipart/form-data content type for

NON-POST reqUESTESoooiiiiiiiii e 198
New additions to BCMathcoovvii 199
Some extensions are going away from PHP corecccen 200

(@00 o Lef 111 1o Y o 201

Property hooks

Property hooks

Accessing or setting the value of a class property is a common task in object-
oriented programming. There are a few ways to do this in PHP. Let's discuss
them first.

The precursor

Take the following class for example.

class User

{

private string $email;

}

As you can tell, we have a private property $email in the class. Now, we can
define getter and setter methods to read and write the value of the property
respectively like so.

156

Property hooks

class User

{

private string $email;

public function getEmail(): string

{
return $this->email;
}
public function setEmail(string $email): void
{
$this->email = $email;
}

$user = new User();
$user->setEmail('john@example.com');
echo $user->getEmail(); // john@example.com

This is a pretty traditional approach and people have been using it for a long
time.

Alternatively, in PHP 8.3, we can shorten this further using the constructor
property promotion like so.

class User

{

public function construct(public string $email) {}

$user = new User('john@example.com');
echo $user->email; // john@example.com

This is a pretty neat approach and it's a bit more concise the using the getter
and setter methods.
We canuse getand set magic methods to achieve the same result as well.

But that's very verbose, error-prone, and not friendly for static analysis tools like
PHPStan.

157

Property hooks

PHP 8.4 is going to make this key aspect better by introducing property hooks.

What are property hooks?

Property hooks, in PHP 8.4, allows you to define custom logic for property access
and mutation. This can be useful for a variety of use cases, such as mutation,
logging, validation, or caching.

Essentially, property hooks allow you to define additional behavior on class
properties mainly using two hooks: get and set. And this will be individual for
certain properties.

The set hook

Here's how we can write a set hook for the $email property in the previous
example.

class User

{
public string $email {
set (string $value) {

// validate the email address

if (!filter var($value, FILTER VALIDATE EMAIL)) {
throw new InvalidArgumentException(

'Invalid email address'

);

}

// Set the value

$this->email = $value;

As you can tell, hooks are enclosed in curly braces that come right after the
property name. We can then define the hooks inside this code block.

The set hook body is an arbitrarily complex method body, which accepts one
argument. If specified, it must include both the type and parameter name. Here,
we can validate or modify the value of the property before it is set.

158

Property hooks

So, when a value is set to the $email property, the set hook will be called and
the value will be validated before it is set.

$user = new User();
$user->email = 'example.com'; // This will throw an exception

$user = new User();
$user->email = 'john@example.com';
echo $user->email; // john@example.com

There's also a shorthand syntax for defining the set hook using the =>
operator.

class User

{
public string $email {
set => strtolower($value);

}

Here the $value is assumed to be the value of the property and the strtolower
function will be called on it.

The get hook

The get hook on the other hand allows you to define custom logic for property
access. This can be useful for properties that need to be changed before they
are returned to the user.

For instance, if the User class has two properties, $firstName and $lastName, we
can define a get hook for the $fullName property like so.

159

Property hooks

class User

{
public function construct(
public string $firstName, public string $lastName

) {}
public string $fullName {
get {
return $this->firstName . " " . $this->lastName;
}
}
}
$user = new User('John', 'Doe');

echo $user->fullName; // John Doe

As you can tell, the get hook does not accept any arguments. It simply returns
the value of the property.

So, when a value is accessed from the $fullName property, the get hook will be
called and the value will be returned based on the logic defined in the hook.

There's a shorthand syntax for defining the get hook using the => operator.

class User

{
public function construct(
public string $firstName,
public string $lastName
) {}

public string $fullName {
get => string $this->firstName . " " . $this->lastName;

This is equivalent to the previous example.

160

Property hooks

Using hooks with interfaces

The hooks can be specified on interfaces as well.

interface Base

{
// Objects implementing this interface must have a readable
// $fullName property. That could be satisfied with a traditional
// property or a property with a "get" hook.
public string $fullName { get; }
}
class SimpleUser implements Base
{
// The "get" hook is optional, and if not specified, the
// property will be readable without a "get" hook.
public function construct(public string $fullName) {}
}

as you can see, the $fullName property is readable without a get hook. But if we
define a get hook for the property, it will be readable with a get hook.

Things to note
There are things to consider while using property hooks.

» Hooks are only available on object properties. So, static properties cannot
have hooks.

» Property hooks override any read or write behavior of the property.

» Property hooks have access to all public, private, or protected methods of
the object, as well as any public, private, or protected properties, including
properties that may have their own property hooks.

* Setting references on hooked properties is not allowed since any attempted
modification of the value by reference would bypass a set hook if one is
defined.

A child class may define or redefine individual hooks on a property by
redefining the property and just the hooks it wishes to override. The type
and visibility of the property are subject to their own rules independently.

161

Property hooks

So, each hook overrides parent implementations independently of each
other.

In Closing

Property hooks are a powerful feature that allows you to customize the behavior
of properties in a way that is a lot clearer, concise, and flexible than other
approaches. They are especially useful when you want to add custom logic to

properties that are read or written by the object.

Although there are two property hooks currently, there's a possibility of adding
more in the future which will make property hooks even more powerful!

162

This is a sample from "PHP 8 in a Nutshell" by Amit D. Merchant.

For more information, Click here.

https://amitmerchant.gumroad.com/l/php8-in-a-nutshell

