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Property hooks

Property hooks

Accessing or setting the value of a class property is a common task in object-
oriented programming. There are a few ways to do this in PHP. Let's discuss
them first.

The precursor

Take the following class for example.

class User

{

private string $email;

}

As you can tell, we have a private property $email in the class. Now, we can
define getter and setter methods to read and write the value of the property
respectively like so.
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class User

{

private string $email;

public function getEmail(): string

{
return $this->email;
}
public function setEmail(string $email): void
{
$this->email = $email;
}

$user = new User();
$user->setEmail('john@example.com');
echo $user->getEmail(); // john@example.com

This is a pretty traditional approach and people have been using it for a long
time.

Alternatively, in PHP 8.3, we can shorten this further using the constructor
property promotion like so.

class User

{

public function  construct(public string $email) {}

$user = new User('john@example.com');
echo $user->email; // john@example.com

This is a pretty neat approach and it's a bit more concise the using the getter
and setter methods.
We canuse getand set magic methods to achieve the same result as well.

But that's very verbose, error-prone, and not friendly for static analysis tools like
PHPStan.
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PHP 8.4 is going to make this key aspect better by introducing property hooks.

What are property hooks?

Property hooks, in PHP 8.4, allows you to define custom logic for property access
and mutation. This can be useful for a variety of use cases, such as mutation,
logging, validation, or caching.

Essentially, property hooks allow you to define additional behavior on class
properties mainly using two hooks: get and set. And this will be individual for
certain properties.

The set hook

Here's how we can write a set hook for the $email property in the previous
example.

class User

{
public string $email {
set (string $value) {

// validate the email address

if (!filter var($value, FILTER VALIDATE EMAIL)) {
throw new InvalidArgumentException(

'Invalid email address'

);

}

// Set the value

$this->email = $value;

As you can tell, hooks are enclosed in curly braces that come right after the
property name. We can then define the hooks inside this code block.

The set hook body is an arbitrarily complex method body, which accepts one
argument. If specified, it must include both the type and parameter name. Here,
we can validate or modify the value of the property before it is set.
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So, when a value is set to the $email property, the set hook will be called and
the value will be validated before it is set.

$user = new User();
$user->email = 'example.com'; // This will throw an exception

$user = new User();
$user->email = 'john@example.com';
echo $user->email; // john@example.com

There's also a shorthand syntax for defining the set hook using the =>
operator.

class User

{
public string $email {
set => strtolower($value);

}

Here the $value is assumed to be the value of the property and the strtolower
function will be called on it.

The get hook

The get hook on the other hand allows you to define custom logic for property
access. This can be useful for properties that need to be changed before they
are returned to the user.

For instance, if the User class has two properties, $firstName and $lastName, we
can define a get hook for the $fullName property like so.
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class User

{
public function  construct(
public string $firstName, public string $lastName

) {}
public string $fullName {
get {
return $this->firstName . " " . $this->lastName;
}
}
}
$user = new User('John', 'Doe');

echo $user->fullName; // John Doe

As you can tell, the get hook does not accept any arguments. It simply returns
the value of the property.

So, when a value is accessed from the $fullName property, the get hook will be
called and the value will be returned based on the logic defined in the hook.

There's a shorthand syntax for defining the get hook using the => operator.

class User

{
public function  construct(
public string $firstName,
public string $lastName
) {}

public string $fullName {
get => string $this->firstName . " " . $this->lastName;

This is equivalent to the previous example.
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Using hooks with interfaces

The hooks can be specified on interfaces as well.

interface Base

{
// Objects implementing this interface must have a readable
// $fullName property. That could be satisfied with a traditional
// property or a property with a "get" hook.
public string $fullName { get; }
}
class SimpleUser implements Base
{
// The "get" hook is optional, and if not specified, the
// property will be readable without a "get" hook.
public function  construct(public string $fullName) {}
}

as you can see, the $fullName property is readable without a get hook. But if we
define a get hook for the property, it will be readable with a get hook.

Things to note
There are things to consider while using property hooks.

» Hooks are only available on object properties. So, static properties cannot
have hooks.

» Property hooks override any read or write behavior of the property.

» Property hooks have access to all public, private, or protected methods of
the object, as well as any public, private, or protected properties, including
properties that may have their own property hooks.

* Setting references on hooked properties is not allowed since any attempted
modification of the value by reference would bypass a set hook if one is
defined.

A child class may define or redefine individual hooks on a property by
redefining the property and just the hooks it wishes to override. The type
and visibility of the property are subject to their own rules independently.
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So, each hook overrides parent implementations independently of each
other.

In Closing

Property hooks are a powerful feature that allows you to customize the behavior
of properties in a way that is a lot clearer, concise, and flexible than other
approaches. They are especially useful when you want to add custom logic to

properties that are read or written by the object.

Although there are two property hooks currently, there's a possibility of adding
more in the future which will make property hooks even more powerful!
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